Serveur d'exploration Sulfur Transférase

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.

Identifieur interne : 000208 ( Main/Exploration ); précédent : 000207; suivant : 000209

Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.

Auteurs : Mohit Kumar [Inde] ; Rajat Sandhir [Inde]

Source :

RBID : pubmed:30105650

Descripteurs français

English descriptors

Abstract

Homocysteine (Hcy) is a sulfur-containing amino acid derived from methionine metabolism. Elevated plasma Hcy levels (> 15 µM) result in a condition called hyperhomocysteinemia (HHcy), which is an independent risk factor in the development of various neurodegenerative disorders. Reactive oxygen species (ROS) produced by auto-oxidation of Hcy have been implicated in HHcy-associated neurological conditions. Hydrogen sulfide (H2S) is emerging as a potent neuroprotective and neuromodulator molecule. The present study was aimed to evaluate the ability of NaHS (a source of H2S) to attenuate Hcy-induced oxidative stress and altered antioxidant status in animals subjected to HHcy. Impaired cognitive functions assessed by Y-maze and elevated plus maze in Hcy-treated animals were reversed on NaHS administration. Increased levels of ROS, lipid peroxidation, protein carbonyls, and 4-hydroxynonenal (4-HNE)-modified proteins were observed in the cortex and hippocampus of Hcy-treated animals suggesting accentuated oxidative stress. This increase in Hcy-induced oxidative stress was reversed following NaHS supplementation. GSH/GSSG ratio, activity of antioxidant enzymes viz; superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were decreased in Hcy-treated animals. NaHS supplementation, on the otherhand, restored redox ratio and activity of antioxidant enzymes in the brains of animals with HHcy. Further, NaHS administration normalized nuclear factor erythroid 2-related factor 2 expression and acetylcholinesterase (AChE) activity in the brain of Hcy-treated animals. Histopathological studies using cresyl violet indicated higher number of pyknotic neurons in the cortex and hippocampus of HHcy animals, which were reversed by NaHS administration. The results clearly demonstrate that NaHS treatment significantly ameliorates Hcy-induced cognitive impairment by attenuating oxidative stress, improving antioxidant status, and modulating AChE activity thereby suggesting potential of H2S as a therapeutic molecule.

DOI: 10.1007/s12017-018-8505-y
PubMed: 30105650


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.</title>
<author>
<name sortKey="Kumar, Mohit" sort="Kumar, Mohit" uniqKey="Kumar M" first="Mohit" last="Kumar">Mohit Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sandhir, Rajat" sort="Sandhir, Rajat" uniqKey="Sandhir R" first="Rajat" last="Sandhir">Rajat Sandhir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India. sandhir@pu.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30105650</idno>
<idno type="pmid">30105650</idno>
<idno type="doi">10.1007/s12017-018-8505-y</idno>
<idno type="wicri:Area/Main/Corpus">000218</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000218</idno>
<idno type="wicri:Area/Main/Curation">000218</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000218</idno>
<idno type="wicri:Area/Main/Exploration">000218</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.</title>
<author>
<name sortKey="Kumar, Mohit" sort="Kumar, Mohit" uniqKey="Kumar M" first="Mohit" last="Kumar">Mohit Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sandhir, Rajat" sort="Sandhir, Rajat" uniqKey="Sandhir R" first="Rajat" last="Sandhir">Rajat Sandhir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India. sandhir@pu.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuromolecular medicine</title>
<idno type="eISSN">1559-1174</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylcholinesterase (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Antioxidants (pharmacology)</term>
<term>Cerebral Cortex (drug effects)</term>
<term>Cerebral Cortex (metabolism)</term>
<term>Cognition Disorders (etiology)</term>
<term>Cognition Disorders (prevention & control)</term>
<term>Hippocampus (drug effects)</term>
<term>Hippocampus (metabolism)</term>
<term>Homocysteine (toxicity)</term>
<term>Hydrogen Sulfide (pharmacology)</term>
<term>Hydrogen Sulfide (therapeutic use)</term>
<term>Hyperhomocysteinemia (drug therapy)</term>
<term>Hyperhomocysteinemia (metabolism)</term>
<term>Hyperhomocysteinemia (psychology)</term>
<term>Lipid Peroxidation (drug effects)</term>
<term>Male (MeSH)</term>
<term>Maze Learning (drug effects)</term>
<term>NF-E2-Related Factor 2 (biosynthesis)</term>
<term>NF-E2-Related Factor 2 (genetics)</term>
<term>NF-E2-Related Factor 2 (physiology)</term>
<term>Neuroprotective Agents (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Carbonylation (drug effects)</term>
<term>Rats (MeSH)</term>
<term>Rats, Sprague-Dawley (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetylcholinesterase (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Antioxydants (pharmacologie)</term>
<term>Apprentissage du labyrinthe (effets des médicaments et des substances chimiques)</term>
<term>Carbonylation des protéines (effets des médicaments et des substances chimiques)</term>
<term>Cortex cérébral (effets des médicaments et des substances chimiques)</term>
<term>Cortex cérébral (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteur-2 apparenté à NF-E2 (biosynthèse)</term>
<term>Facteur-2 apparenté à NF-E2 (génétique)</term>
<term>Facteur-2 apparenté à NF-E2 (physiologie)</term>
<term>Hippocampe (effets des médicaments et des substances chimiques)</term>
<term>Hippocampe (métabolisme)</term>
<term>Homocystéine (toxicité)</term>
<term>Hyperhomocystéinémie (métabolisme)</term>
<term>Hyperhomocystéinémie (psychologie)</term>
<term>Hyperhomocystéinémie (traitement médicamenteux)</term>
<term>Mâle (MeSH)</term>
<term>Neuroprotecteurs (pharmacologie)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxydation lipidique (effets des médicaments et des substances chimiques)</term>
<term>Rat Sprague-Dawley (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Sulfure d'hydrogène (pharmacologie)</term>
<term>Sulfure d'hydrogène (usage thérapeutique)</term>
<term>Troubles de la cognition (prévention et contrôle)</term>
<term>Troubles de la cognition (étiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetylcholinesterase</term>
<term>Oxidoreductases</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antioxidants</term>
<term>Hydrogen Sulfide</term>
<term>Neuroprotective Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Facteur-2 apparenté à NF-E2</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Hippocampus</term>
<term>Lipid Peroxidation</term>
<term>Maze Learning</term>
<term>Protein Carbonylation</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Hyperhomocysteinemia</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Apprentissage du labyrinthe</term>
<term>Carbonylation des protéines</term>
<term>Cortex cérébral</term>
<term>Hippocampe</term>
<term>Peroxydation lipidique</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Cognition Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur-2 apparenté à NF-E2</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Hippocampus</term>
<term>Hyperhomocysteinemia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetylcholinesterase</term>
<term>Cortex cérébral</term>
<term>Espèces réactives de l'oxygène</term>
<term>Hippocampe</term>
<term>Hyperhomocystéinémie</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antioxydants</term>
<term>Neuroprotecteurs</term>
<term>Sulfure d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteur-2 apparenté à NF-E2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Cognition Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Troubles de la cognition</term>
</keywords>
<keywords scheme="MESH" qualifier="psychologie" xml:lang="fr">
<term>Hyperhomocystéinémie</term>
</keywords>
<keywords scheme="MESH" qualifier="psychology" xml:lang="en">
<term>Hyperhomocysteinemia</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Hydrogen Sulfide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Homocysteine</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Homocystéine</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Hyperhomocystéinémie</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Sulfure d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Troubles de la cognition</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Male</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Mâle</term>
<term>Oxydoréduction</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Homocysteine (Hcy) is a sulfur-containing amino acid derived from methionine metabolism. Elevated plasma Hcy levels (> 15 µM) result in a condition called hyperhomocysteinemia (HHcy), which is an independent risk factor in the development of various neurodegenerative disorders. Reactive oxygen species (ROS) produced by auto-oxidation of Hcy have been implicated in HHcy-associated neurological conditions. Hydrogen sulfide (H
<sub>2</sub>
S) is emerging as a potent neuroprotective and neuromodulator molecule. The present study was aimed to evaluate the ability of NaHS (a source of H
<sub>2</sub>
S) to attenuate Hcy-induced oxidative stress and altered antioxidant status in animals subjected to HHcy. Impaired cognitive functions assessed by Y-maze and elevated plus maze in Hcy-treated animals were reversed on NaHS administration. Increased levels of ROS, lipid peroxidation, protein carbonyls, and 4-hydroxynonenal (4-HNE)-modified proteins were observed in the cortex and hippocampus of Hcy-treated animals suggesting accentuated oxidative stress. This increase in Hcy-induced oxidative stress was reversed following NaHS supplementation. GSH/GSSG ratio, activity of antioxidant enzymes viz; superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were decreased in Hcy-treated animals. NaHS supplementation, on the otherhand, restored redox ratio and activity of antioxidant enzymes in the brains of animals with HHcy. Further, NaHS administration normalized nuclear factor erythroid 2-related factor 2 expression and acetylcholinesterase (AChE) activity in the brain of Hcy-treated animals. Histopathological studies using cresyl violet indicated higher number of pyknotic neurons in the cortex and hippocampus of HHcy animals, which were reversed by NaHS administration. The results clearly demonstrate that NaHS treatment significantly ameliorates Hcy-induced cognitive impairment by attenuating oxidative stress, improving antioxidant status, and modulating AChE activity thereby suggesting potential of H
<sub>2</sub>
S as a therapeutic molecule.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30105650</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-1174</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Neuromolecular medicine</Title>
<ISOAbbreviation>Neuromolecular Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.</ArticleTitle>
<Pagination>
<MedlinePgn>475-490</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12017-018-8505-y</ELocationID>
<Abstract>
<AbstractText>Homocysteine (Hcy) is a sulfur-containing amino acid derived from methionine metabolism. Elevated plasma Hcy levels (> 15 µM) result in a condition called hyperhomocysteinemia (HHcy), which is an independent risk factor in the development of various neurodegenerative disorders. Reactive oxygen species (ROS) produced by auto-oxidation of Hcy have been implicated in HHcy-associated neurological conditions. Hydrogen sulfide (H
<sub>2</sub>
S) is emerging as a potent neuroprotective and neuromodulator molecule. The present study was aimed to evaluate the ability of NaHS (a source of H
<sub>2</sub>
S) to attenuate Hcy-induced oxidative stress and altered antioxidant status in animals subjected to HHcy. Impaired cognitive functions assessed by Y-maze and elevated plus maze in Hcy-treated animals were reversed on NaHS administration. Increased levels of ROS, lipid peroxidation, protein carbonyls, and 4-hydroxynonenal (4-HNE)-modified proteins were observed in the cortex and hippocampus of Hcy-treated animals suggesting accentuated oxidative stress. This increase in Hcy-induced oxidative stress was reversed following NaHS supplementation. GSH/GSSG ratio, activity of antioxidant enzymes viz; superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were decreased in Hcy-treated animals. NaHS supplementation, on the otherhand, restored redox ratio and activity of antioxidant enzymes in the brains of animals with HHcy. Further, NaHS administration normalized nuclear factor erythroid 2-related factor 2 expression and acetylcholinesterase (AChE) activity in the brain of Hcy-treated animals. Histopathological studies using cresyl violet indicated higher number of pyknotic neurons in the cortex and hippocampus of HHcy animals, which were reversed by NaHS administration. The results clearly demonstrate that NaHS treatment significantly ameliorates Hcy-induced cognitive impairment by attenuating oxidative stress, improving antioxidant status, and modulating AChE activity thereby suggesting potential of H
<sub>2</sub>
S as a therapeutic molecule.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Mohit</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sandhir</LastName>
<ForeName>Rajat</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India. sandhir@pu.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BT/361/NE/TBP/2012</GrantID>
<Agency>Department of Bio-Technology (DBT), Govt. of India, New Delhi</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>[F.17-7(J)/2004(SA-1)]</GrantID>
<Agency>University Grants Commission (UGC), New Delhi</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuromolecular Med</MedlineTA>
<NlmUniqueID>101135365</NlmUniqueID>
<ISSNLinking>1535-1084</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018696">Neuroprotective Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495637">Nfe2l2 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0LVT1QZ0BA</RegistryNumber>
<NameOfSubstance UI="D006710">Homocysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.7</RegistryNumber>
<NameOfSubstance UI="D000110">Acetylcholinesterase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YY9FVM7NSN</RegistryNumber>
<NameOfSubstance UI="D006862">Hydrogen Sulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000110" MajorTopicYN="N">Acetylcholinesterase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002540" MajorTopicYN="N">Cerebral Cortex</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003072" MajorTopicYN="N">Cognition Disorders</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006624" MajorTopicYN="N">Hippocampus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006710" MajorTopicYN="N">Homocysteine</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006862" MajorTopicYN="N">Hydrogen Sulfide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020138" MajorTopicYN="N">Hyperhomocysteinemia</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018782" MajorTopicYN="N">Maze Learning</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018696" MajorTopicYN="N">Neuroprotective Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050050" MajorTopicYN="N">Protein Carbonylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Antioxidant</Keyword>
<Keyword MajorTopicYN="Y">Homocysteine</Keyword>
<Keyword MajorTopicYN="Y">Hydrogen sulfide</Keyword>
<Keyword MajorTopicYN="Y">Memory</Keyword>
<Keyword MajorTopicYN="Y">Nrf2</Keyword>
<Keyword MajorTopicYN="Y">Oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30105650</ArticleId>
<ArticleId IdType="doi">10.1007/s12017-018-8505-y</ArticleId>
<ArticleId IdType="pii">10.1007/s12017-018-8505-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1165-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2009 Jan;75(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2018 Nov;120:87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30055195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2013 Nov 12;252:302-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23912038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jul 1;17(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22229673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Biochem Behav. 2016 Nov - Dec;150-151:207-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27883916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1997 Feb 14;40(4):559-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9046347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2016 Nov 23;10:538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27932944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2004;24:539-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Rep. 2015 Jul;12(1):1145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25776802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2012 Apr;62(5-6):1964-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22245562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013 Jan 18;1:45-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2013;53:401-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23294312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Neurosci. 2011 Nov;29(7):693-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 1995 Nov;21(3):285-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr J. 2004 May 10;3:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2008 Oct;74(13):1526-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Gas Res. 2015 Jan 10;5(1):1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25606341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2015 Jun 1;286:222-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Res. 2003 Jan;45(1):117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12507730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychopharmacology (Berl). 1990;101(1):27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2343073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Nutr. 2008 Feb;2(4):313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18850223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1993 Jan;91(1):308-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2014 Jun;35(6):707-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jan 28;326(4):794-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neuropsychopharmacol Biol Psychiatry. 2005 Sep;29(7):1152-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2017 May 6;43(3):434-450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28394038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Nov 25;249(22):7130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4436300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">388439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 May-Jun;7(5-6):778-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pulm Pharmacol Ther. 2007;20(3):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16533614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2013 Mar;33(6):1104-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23297346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;186:464-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1978225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2014 Nov;396(1-2):99-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25052005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm (Vienna). 2005 Jan;112(1):163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15599614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2018 Apr;50(3-4):439-451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29256178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Dec 15;45(12):1705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18848879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2004 Aug;35(8):1957-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15178827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Mol Med. 2017 Jan;9(1):78-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Aging Sci. 2013 Feb;6(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2012 Aug 17;9:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22898621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2012 Aug;37(8):1660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CNS Neurol Disord Drug Targets. 2018;17(9):654-670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29866024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Sep;27(5-6):612-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2016 May;53(4):2451-2467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2002 Aug;26(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12392053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):1923-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Pharmacol Physiol. 2008 Feb;35(2):180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2014 Dec 15;467:1-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25193447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2002 Sep-Oct;23(5):655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12392766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Neuropsychopharmacol. 2017 Apr 1;20(4):305-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27988490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2015 Jul 15;309(2):C107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2003 Jun;85(5):1336-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Sep 15;17(6):849-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22360462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2006 Feb;29(1):3-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16601863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2009 Nov 10;163(4):1039-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Nov;88(Pt B):337-349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26117320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Rev. 1999 Apr;57(4):126-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10228350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1978 Feb;186(1):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2007 Feb;100(4):1121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17212697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Neurosci. 2012 Apr;30(2):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 Jul;74(1):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">962076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2016 Oct;65(10):3171-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27335232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 27;94(11):5923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Brain Dis. 2018 Jun 21;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29926428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2013 Jan 5;698(1-3):463-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23183109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1688-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jan;11(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18837652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1951 Nov;193(1):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14907713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2014 Nov 1;274:319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;105:114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6727659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2009 Apr;174(4):1481-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2016 Aug 1;346(1):111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27321959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Compr Physiol. 2015 Dec 15;6(1):471-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26756640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 2018 Apr;33(3):580-592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29243196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2012 Oct 25;200(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2014 Apr 1;262:35-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24423987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jan;12(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19852698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2008 Jan;153(1):100-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Kumar, Mohit" sort="Kumar, Mohit" uniqKey="Kumar M" first="Mohit" last="Kumar">Mohit Kumar</name>
</noRegion>
<name sortKey="Sandhir, Rajat" sort="Sandhir, Rajat" uniqKey="Sandhir R" first="Rajat" last="Sandhir">Rajat Sandhir</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/SulfurTransferaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000208 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000208 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    SulfurTransferaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30105650
   |texte=   Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30105650" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SulfurTransferaseV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:58:45 2020. Site generation: Sat Nov 21 14:59:12 2020